II B.Tech - II Semester - Regular / Supplementary Examinations MAY - 2023

HYDRAULICS AND HYDRAULIC MACHINES (CIVIL ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

| | | | BL | CO | Max.
 Marks |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | a) | What is the fundamental difference between
 pipe flow and flow through open channel?
 Give the relation between Chezy's constant
 and manning constant. | K2 | CO1 | 7 M |
| b)Find the velocity of flow and rate of flow of
 water through a rectangular channel of 6m
 wide and 3m deep, when it is running full.
 The channel is having bed slop as 1 in 2000.
 Take the Chezy's constant C=55. | CO1 | 7 M | | | |
| OR | | | | | |
| 2 | Derive an expression for the discharge through
 an open channel using Chezy's formula. | K3 | CO1 | 14 M | |

UNIT-II					
3		cribe the various types of flows in open nnels.	K2	CO 2	14 M
OR					
4	For the Most economical section of a trapezoidal channel prove that i) Side length $=$ half of top width ii) $m=d / 2$		K3	CO 2	14 M
UNIT-III					
5	a)	Derive an expression for the work done when a jet of water strikes a moving vertical plate.	K3	CO3	7 M
	b)	A nozzle of 50 mm diameter delivers a stream of water at $20 \mathrm{~m} / \mathrm{s}$ perpendicular to a plate that moves away from the jet at $5 \mathrm{~m} / \mathrm{s}$. Find i) the force on the plate ii) work done / sec and iii) efficiency of jet	K3	CO3	7 M
OR					
6	a)	A water jet coming out from a nozzle of diameter 0.178 m strikes a fixed flat plate with a velocity $20 \mathrm{~m} / \mathrm{sec}$. Find the force exerted on the plate when the plate is a vertical.	K3	CO3	7 M
	b)	A jet of water from a nozzle is deflected through 60° from its original direction by a curved plate when it enters tangentially	K4	CO 3	7 M

	without shock with a velocity of $30 \mathrm{~m} / \mathrm{sec}$ and leaves with a mean velocity of 25 $\mathrm{m} / \mathrm{sec}$. If the discharge from the nozzle is $0.8 \mathrm{~kg} / \mathrm{sec}$, calculate the magnitude and direction of the resultant force on the vane if the vane is stationary.			
UNIT-IV				
7	a) How can you classify the turbines?	K2	CO4	7 M
	b) Find out the expression for work done per second by the water on Pelton wheel.	K3	CO4	7 M
OR				
8	a) Explain working operation of a Francis turbine.	K2	CO4	7 M
	b) Why a draft tube is used with reaction turbine?	K2	CO4	7 M
UNIT-V				
9	State the main components of a centrifugal pump and describe the function of each with a neat sketch.	K2	CO5	14 M
OR				
10	Derive expression for minimum speed required for the centrifugal pump to start.	K3	CO5	14 M

